kbys.net
当前位置:首页 >> 矩阵乘法有什么意义 >>

矩阵乘法有什么意义

矩阵进行一系列初等行变换等于左乘一系列初等矩阵,进行列变换等于右乘一系列初等矩阵

不能说矩阵乘法有什么意义 你首先明白矩阵是用来记录大量数据的工具,是个存放数据的地方,简洁明了,不论你是多少维的! 当两个或多个矩阵之间的数据存在某种关系时候(比如多个向量之间的积),我们可以有意识的把他们放在矩阵中去去做乘法,...

矩阵是线性变换的表象,矩阵的乘积可以看做线性变换的复合

矩阵相乘主要用来对应线性变换 我们之前会把 x 变为 2x 当然也想把 (x,y) 变为 (x+2y, 3x-4y) (x+2y, 3x-4y) = (x,y) [1, 3; 2, -4] 或记为 x+2y 1 2 x 3x-4y = 3 -4 y 这与矩阵的乘法是吻合的

太多了,矩阵本身在工程、物理、数学、力学、经济...等等方面就有很多应用,特别是电子计算机的出现以及计算方法的研究。 从线性代数本身来看,矩阵的重要作用是它用一个数表来刻画一个线性映射,一个基本结论,数域P上的m*n维线性空间L(V1,V2)...

矩阵和行列式虽然都只是速记符号,不过也不是没有意义的。历史上矩阵的出现远远晚于行列式,也就是因为速记这个目的并不本质。 矩阵其实是用来刻画有限维线性空间之间的线性映射的,矩阵本身是线性映射,反过来有限维线性空间之间的线性映射也一...

左矩阵的列数和右矩阵的行数相等,两矩阵即可正常相乘。 不知道你所谓的《有意义》有什么含义。就纯数学的意义而论,就算是一个单独的零构成的《一阶零矩阵》,也不能说它无意义,而m×n的零矩阵也是有意义的。

A是2*3的矩阵,2行3列,B是2*2的矩阵,2行2列。两个矩阵相乘需要前者的列数与后者的行数相等才能进行,这里3不等于2。

矩阵A为m×n,矩阵B为n×s,AB就为m×s 显然A的列数要等于B的行数,如果不相等,根据矩阵乘法运算的定义,无法计算。 两个2X3的矩阵,AB无意义。 而ABT,或BTA,或ATB,或BAT都是可以相乘的,是存在的。 newmanhero 2015年4月26日22:02:08 希望对你...

思索很久,终于明白了。 矩阵是一个线性变换 ,就是对一个向量进行拉伸和变换,是通过矩阵的变换基完成的。如果以矩阵的行向量作为变换基。例如,x轴变换基负责对向量的x维度数据(x,0)进行变换,y轴变换基负责对y维度向量(0,y)进行变换,那么...

网站首页 | 网站地图
All rights reserved Powered by www.kbys.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com