kbys.net
当前位置:首页 >> 圆锥体积推导过程图解 >>

圆锥体积推导过程图解

设圆锥高H,底面半径为R,底面积S=π*R^2 用平行于底面的平面把它切成n片,则每片的厚度为H/n 可把每片近似看做底半径为k/n*r的圆柱 其体积为(π*k/n*r)^2*h/n,对k=1到n求和得 S=πR^2H*(1/6/n^3)*n*(n+1)*(2n+1) 令n=无穷大,则S=1/3πR^2H 圆锥的体积...

一、等效替代法: 圆柱的体积为;SH 圆锥的体积是圆柱的三分之一(这个自己做实验就可以看出来.如:拿一个圆柱的器具和一个圆锥的器具,在圆锥的器具里倒满水,把水往圆柱的器具里倒,倒三次才倒满.对了,这个圆锥的器具的半径和高要和圆柱的器具一样),...

圆锥的体积 一个圆锥所占空间的大小,叫做这个圆锥的体积. 一个圆锥的体积等于与它等底等高的圆柱的体积的1/3 根据圆柱体积公式V=Sh(V=rrπh),得出圆锥体积公式: 圆锥 V=1/3Sh S是圆锥的底面积,h是圆锥的高,r是圆锥的底面半径。 证明: 把...

圆锥体体积公式的推导过程 给你种初等的方法 设圆锥高H,底面半径为R,底面积S=π*R^2 用平行于底面的平面把它切成n片,则每片的厚度为H/n 可把每片近似看做底半径为k/n*r的圆柱 其体积为(π*k/n*r)^2*h/n,对k=1到n求和得 S=πR^2H*(1/6/n^3)*n*(n+...

圆锥的体积是这样推导出的 其实很简单.任何物体的体积都离不开底面积×高的求法. 圆柱的体积公式是V=Sh 那么与它等底等高的圆锥的体积是 把与它等底等高的圆锥装满水,倒进圆锥体里,你可以发现倒3次才能倒满圆柱. 所以与圆柱等底等高的圆锥是这个...

∫(0→h)πr²dy=∫(0→h)πr²dy=∫(0→h)π(Ry/h)²dy=π(R/h)²∫(0→h)y²dy=π(R/h)²(1/3y³)|(0→h)=π(R/h)²(1/3)h³=(1/3)πR²h

把圆锥沿高分成k分 每份高 h/k, 第 n份半径:n*r/k 第 n份底面积:pi*n^2*r^2/k^2 第 n份体积:pi*h*n^2*r^2/k^3 总体积(1+2+3+4+5+...+n)份:pi*h*(1^2+2^2+3^2+4^2+...+k^2)*r^2/k^3 因为 1^2+2^2+3^2+4^2+...+k^2=k*(k+1)*(2k+1)/6 所以 总体...

圆台体积公式 V=1/3 * π * h (R^2+Rr+r^2) 其实圆台 相当于 大圆锥 切去顶端的小圆锥 。 圆锥体的体积: V=1/3 * π * h * r^2 假设,圆台底面半径为 R ,顶面半径为 r ,台高 h ; 则假设的大圆锥体积 V1=1/3 * π * h1 * R^2 ; 小圆锥的体积 V...

圆锥体积公式的推导是小学阶段几何知识的最后一课, 学生在前面的学习 中对点、线、面、体有一定的基础知识,同时也获得了转化、对应、比较等数学思想。尤其 是对于高年级段的孩子来讲他们获取知识的渠道十分丰富, 自己又有一定探究能力, 对于...

小学的推导方法是倒沙子,正常的方法是微积分,将圆锥分成无数个小圆盘,求其总体积

网站首页 | 网站地图
All rights reserved Powered by www.kbys.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com